
Randomized Optimization - Github Link

Joseph Waugh
Georgia Tech ID: 903563084

CS 7641: Machine Learning
Spring 2022

March 6, 2022

1 Description of Optimization
Problem

This research consists of utilizing four local random search
optimization algorithms: randomized hill climbing, sim-
ulated annealing, genetic algorithm, and MIMIC. Using
these optimization algorithms, the following three opti-
mization problems were tested:

• Four Peaks: An optimization problem where two
local optima and two global optima at the edges of
the range exist, and the goal is to identify the maxima
via an optimization function.

• Knapsack Problem: With a given set of items (fea-
turing a mass and a value), determine the selection
of items so that the total value of the items is max-
imized while the weight is less than or equal to the
capacity of the limit defined by the knapsack.

• Flip Flop: With a given bit string, the number of
times of alterations in the given bits is counted from a
given number to any number. A maximized bit string
will consist of all alternating digits.

This paper will consist of an overview of each algorithm,
performance in relation to the three optimization prob-
lems, and an application with a neural network infrastruc-
ture used for the previous assignment (Supervised Learn-
ing).

1.1 Algorithm Overview

1.1.1 Randomized Hill Climb

The randomized hill climb (RHC) algorithm is a search
algorithm that aims to identify an optimal solution by
continuously moving towards a maximization point un-
til the best state is achieved based on the given range
of data. The algorithm starts at a given non-optimized
space, where the function then identifies a direction that
moves towards the maximum value, thus optimizing the
maximum value until an optimal value is achieved. The
function will iterate until a given peak is identified; how-
ever, this function can potentially identify either a global
or local maxima, given that finding any maximum value
results in the function stopping since going in the reverse
direction is also not allowed per the algorithm. While

RHC can work well in continuous and discrete ranges of
data, in addition to being able to identify optimal values
per an objective function, there are distinct disadvantages
of using this algorithm. As mentioned before, obtaining a
local maxima instead of the true maximum value is short-
fall with using this algorithm. In addition, if the data is
a plateau (the search space is flat relative to the target),
then the algorithm is not able to identify the optimal di-
rection in which to move, given that the values in either
direction are the same.

Figure 1: Randomized Hill Climb (RHC) Algorithm

1.1.2 Simulated Annealing

The simulated annealing (SA) algorithm is another search
algorithm that operates in a similar fashion to RHC. SA
also operates in a single-state format, where modifications
to the output are based on a search of the nearby values,
with the model moving towards the maxima; however,
SA differs by allowing the stepwise function to traverse
towards a worse solution (a future value with a lower
value than the current state value) in the early stages
of the search based on a given probability prior to
performing a hill climb towards the maxima. The ability
to traverse in a direction different than RHC allows the
model to potentially avoid the shortfall of being limited
to finding the local maxima instead of the true maxima.
This method essentially guarantees an optimal solution,
given that the function will first traverse the entire range
prior to performing the hill climb portion of the function;
however, this can be very computationally expensive and
also the SA algorithm fails to identify whether an optimal
solution has been identified. In addition, if the data is a
plateau, SA also faces similar issues as RHC and thus has

1

https://github.gatech.edu/jwaugh6/Randomized-Optimization


to traverse in a potentially incorrect direction due to not
understanding the immediate optimal path.

Figure 2: Simulated Annealing (SA) Algorithm

1.1.3 Genetic Algorithm

The genetic algorithm (GA) is another search algorithm
that has strong similarities to the SA algorithm. GA uti-
lizes random search to determine ”parent nodes” as the
origin for the search, and then uses these parents to iden-
tify ”children nodes” for the next iteration of the search.
These unique combinations of parent and child nodes then
are measured in terms of the proximity towards the true
maxima, with the population of parent and child nodes
eventually moving towards the optimal maxima value.
This algorithm has gained popularity due to the speed in
comparison to RHC and SA; however, similar to the prior
algorithms, there are still issues with the model identify-
ing local maxima or failing to identify a maxima at all
(i.e., plateaued data). To resolve this issue, GA utilizes
crossover to take the optimal results from multiple parent
nodes to shape the direction of a new child node.

Figure 3: Genetic Algorithm (GA)

1.1.4 Mutual-Information-Maximizing Input
Clustering (MIMIC)

The MIMIC algorithm utilizes prior iterations and uses
probability densities to work towards a solution and iden-
tify the local maxima. This algorithm utilizes information
regarding the associated optimization function search re-
sults to future search iterations, thus creating the situation
where a gradually weighted threshold forces a solution to-
wards the local maxima. This function is computationally
expensive, given the need for calculating conditional prob-
abilities and mutual information; however, the obtained
results have been proven to converge quickly using high
cost functions.

Figure 4: MIMIC Algorithm

2 Results

2.1 Algorithm Results

2.1.1 Randomized Hill Climb

Overview:
The randomized hill climb algorithm works well at
improving the fitness of a given function based on testing
neighbors and moving towards the optimal region; how-
ever, this algorithm struggles in situations where a local
optima is reached instead of the maxima. To alleviate
this issue, a randomized version of the algorithm is used,
where the origin is randomly selected.

Optimization Problem - Flip Flop:
In the Flip Flop optimization problem, 50 random restarts
were used with 100 max attempts in order to avoid the
issue of finding only local maxima values. The algorithm
took a total of 1,376 seconds (13.63 seconds avg.), and
there were 255,000 iterations in total (5,000 per step).
For each iteration, the algorithm appears to be stuck in
terms of the fitness value. This is likely due to the local
minima being found despite the random origins. The
function settles at an average fitness value of 318.9.

Figure 5: Flip Flop - RHC Fitness

Optimization Problem - Four Peaks:
In the Four Peaks optimization problem, 50 random
restarts were also used with 100 max attempts to avoid
finding local maxima. The algorithm took a total of 13.63
seconds (0.48 seconds avg.), and there were 70,000 itera-
tions in total (5,000 per step). This algorithm performed
poorly in terms of not being able to escape local minima,
which is reflective in the avg. fitness score of 4.5 after
5,000 iterations.

2



Figure 6: Four Peaks - RHC Fitness

Optimization Problem - Knapsack:
In the Knapsack optimization problem, 50 random restarts
were used with 100 max attempts to avoid finding local
maxima. The algorithm took a total of 20.25 seconds
(0.20 seconds avg.), and there were 255,000 iterations in
total (5,000 per step). This algorithm performed the best
among the RHC fitness functions in terms of escaping lo-
cal minima, which is reflective in the avg. fitness score of
1,473 after 5,000 iterations. This application appears to
pleateau, therefore suggesting that the performance won’t
increase due to the presence of local optima that don’t al-
low the randomized optimization function to proceed any
further.

Figure 7: Knapsack - RHC Fitness

2.1.2 Simulated Annealing:

The simulated annealing algorithm aims to reduce the
issues viewed with the random hill climb algorithm, by
allowing the model to step backwards in order to escape
the local maxima and find the true optima values. The
results shown in each of the three algorithms show that
the SA model performs well in reducing this issue. For the
Simulated Annealing algorithm, both the Geometric and
Exponential temperature decay functions were used via a
GridSearch method, along with 5 different parameters for
initial temperature (1, 10, 50, 500, 5000). These resulted
in 10 different SA algorithms to be tested for each of the
three optimization problems.

Optimization Problem - Flip Flop:
For the Flip Flop optimization problem, the avg. fitness
value that was achieved was 360.8. The algorithms took
35.6 seconds to train (1.18 seconds avg.), thus showing an

increase in runtime compared to RHC. For this problem,
the geometric temperature decay, with a schedule initial
temperature value of 1 (optimized to 0.6) resulted in the
highest fitness value at 464.

Figure 8: Flip Flop - SA Fitness

Optimization Problem - Four Peaks:
For the Four Peak optimization problem, the simulated an-
nealing algorithm struggled to optimize the fitness score,
with a maximum score of 100.0 achieved. The algorithm
took 276.2 seconds to train (27.6 seconds avg.), still show-
ing an increase over RHC. The optimal parameters for
this function included a geometric temperature decay and
a scheduled initial temperature value of 1 (optimized to
0.77). The function parameters are almost identical to
those for the Flip Flop optimization problem; however,
the presence of local minima appears to still be playing a
major role in the poor performance of this model. Despite
having a maximum of 5,000 iterations, the model strug-
gles to identify a maximum value even with the ability to
move in the opposite direction based on the temperature
decay. To potentially increase the performance, altering
the temperature decay values to increase the range may
potentially support the model’s ability to escape the local
minima; however, this is not a guarantee, given the poor
performance across a wide range of values (1 - 5000) for
temperature decay.

Figure 9: Four Peaks - SA Fitness

3



Optimization Problem - Knapsack:
For the Knapsack optimization problem, the simulated an-
nealing algorithm appeared to perform well in terms of
achieving an optimal fitness score. The maximum fitness
score achieved in 20 iterations (maximum of 5,000 itera-
tions using 5 different values for scheduled temperature
decay (1, 10, 50, 500, 5000)). The optimal parameters
included utilizing all 5,000 iterations with an exponen-
tial temperature decay initialized at 5,000 (optimized to
4999.98). The performance appears to be slightly higher
than all other trained models; therefore, the tuning of
these parameters may not have a huge weight, unless a
significant change to the input data was made.

Figure 10: Knapsack - SA Fitness

2.1.3 Genetic Algorithm

Overview:
For the genetic algorithm, I utilized 2 different variations
of population size (500, 1000) and three different vari-
ations of mutation rates (0.1, 0.25, 0.5) for a total of 6
trained models per each optimization problem.

Optimization Problem - Flip Flop:
For the Flip Flop problem, a maximum fitness score of
454 was achieved, which again shows an increase in per-
formance compared to random hill climb and simulated
annealing. The optimal parameters that were utilized
were a population size of 500 and mutation rate of 0.5;
however, the results obtained were very similar in terms
of the proximity to the maximum fitness score. These
results are shown below:

Flip Flop Parameters
Population Size Mutation

Rate
Fitness Time

500 0.5 454 43.98
1000 0.25 452 62.34
1000 0.5 452 66.63
1000 0.1 451 87.47

Figure 11: Flip Flop - GA Fitness Scores
The primary driver in higher run times appears to be
population size, with minimal change to the overall fitness
score. In order to improve results shown below, a likely
next step could be to include a wider range of population
sizes, as this could either continue to improve run times

(and thus use this computational power to increase the
number of iterations), or increase the population size to
allow for a more generalized estimate of how the model
will react to additional data.

Optimization Problem - Four Peaks:
For the Four Peaks problem, the Genetic Algorithm per-
formed poorly across all iterations, regardless of tuning
parameters. The maximum value was achieved at 5,000
iterations for all combinations of tuning parameters at a
fitness score value of 189. The key driver here appears
to be the number of iterations, in terms of pushing this
number higher; however, the presence of local minima in
addition to relatively low mutation score variants (tested
0.1, 0.25, and 0.5) could lead to the model not being able
to escape the local optima values, similar to many of the
shortfalls in RHC and SA that have been observed thus
far. These results are shown below:

Four Peaks Parameters
Population Size Mutation

Rate
Fitness Time

1000 0.1 189 0.04
500 0.5 189 29.39
500 0.25 189 31.55
1000 0.5 189 86.25

Figure 12: Flip Flop - GA Fitness Scores
Similar to before, there’s a wide range in terms of
runtimes for the different parameters with the same
fitness score. To move beyond this, an increase in the
number of iterations would support the chances of the
model escaping a local minima (though it’s not guaran-
teed); however, increasing the mutation rate would also
potentially allow for a greater chance at escaping local
minima, but would still introduce variance between runs
and potentially would result in either escaping a maxima
range unintentionally, or moving towards other local
minima within the region.

Optimization Problem - Knapsack:
The Genetic Algorithm performed moderately well
compared to random hill search and simulated annealing,
with an average fitness score achieved of 3,224. This
model also contains a very tight window of values based
on the tuning parameters included, with a significant
change showing in terms of runtimes. These values are
shown below:

Knapsack Parameters
Population Size Mutation

Rate
Fitness Time

1000 0.1 3224.5 33.06
1000 0.25 3224.5 36.04
500 0.5 3224.4 23.50

Figure 13: Knapsack - GA Fitness Scores
Again, modifications to parameters can be attempted in
order to reduce computational complexity (i.e., reduc-
ing population size and achieving similar fitness score,

4



using additional computational complexity to perform
additional iterations); however, it appears this model is
limited in terms of functionality regarding the current
dataset provided.

2.1.4 MIMIC

Overview:
For the MIMIC algorithm, I utilized two variants for
population size (500, 1000) and three parameters for
percentage retained (0.1, 0.25, 0.5). Therefore, 6 models
were created to train on each of the three optimization
problems.

Optimization Problem - Flip Flop:
The MIMIC algorithm performed well in the Flip Flop
problem, achieving a maximum fitness score of 444 (avg.
score of 433) over. The outputs appear to show that
there isn’t a clear linear trend with population size and
retained percentage, as the top two values show alternate
trends: higher population size & lower kept percentage,
and vice-versa; however, by utilizing a high population
size with a low kept population size, the model appears
to a regression in terms of fitness score. These values are
shown below:

Flip Flop Parameters
Population Size Retained

Percentage
Fitness Time

1000 0.1 444 1267.09
500 0.5 438 897.99
500 0.1 265 0.02
1000 0.5 265 0.14

Figure 14: Flip Flop - MIMIC Fitness Scores
Optimization Problem - Four Peaks:
The MIMIC algorithm performed moderately well again
for FourPeaks optimization problem. In tuning the
model results, the trend that was discovered was a
higher population size led to a better overall fitness
score, whereas a clear trend couldn’t be established for
retained percentage values. Therefore, this suggests that
the greater amount of data used to generate population
distributions for this algorithm leads to higher fitness
results. The top fitness value obtained was 155 with a
runtime of 271.5 seconds. Similar results are shown below:

Four Peaks Parameters
Population Size Retained

Percentage
Fitness Time

1000 0.25 155 271.50
1000 0.1 146 138.02
500 0.1 132 66.18

Figure 15: Four Peaks - MIMIC Fitness Scores
The potential improvement that can be applied here is
using an increased population size in order to maximize
the fitness score; however, this would be more computa-
tionally expensive as well, based on the trends with the

runtimes in the grid search.

Optimization Problem - Knapsack:
THe MIMIC algorithm performed very well for the
Knapsack optimization problem. The maximum fitness
score earned was 3237.75 with a runtime of 326.37
seconds. The ideal parameters to maximize the fitness
score included a population of 1000 and a kept percentage
value of 0.1. Interestingly, the lower retained population
values appeared to have a better fitness curve. Therefore,
in order to maximize the fitness, a couple of options could
be exercised. Given that a lower retained percentage
value results in a higher fitness score, one could test
smaller increments of this parameter; however, it would
be important to ensure that additional data is provided
to the model in order to accurately generalize the dataset
for proper fitting. The results of MIMIC for the Knapsack
problem are shown below:

Knapsack Parameters
Population Size Retained

Percentage
Fitness Time

1000 0.1 3237.75 326.36
1000 0.25 3235.33 251.24
1000 0.5 3217.53 266.15

Figure 16: Knapsack - MIMIC Fitness Scores

3 Analysis of Results

3.1 Flip Flop:

In the Flip Flop optimization problem the following
comparative results were achieved:

Flip Flop Problem
Metric RHC SA GA MIMIC
Avg. Fitness 318 361 356 339
Max Fitness 409 464 454 444
Avg. Time(s) 7.91 18.1 27.6 1267.9

Figure 17: Flip Flop - Algorithm Metric Comparison
Based on these results, the Simulated Annealing algo-
rithm is the most successful based on avg. fitness and max
fitness, in addition to have the second quickest runtime.
This advantage for Simulated Annealing is the opportu-
nity to step backwards in terms of the fitness function,
which allows the algorithm to escape local maxima. Con-
versely, the algorithm that can’t perform this ”backward
step”, randomized hill climbing, performs the worst with
an average fitness score of 4.55. This is also reflective
with a low average run time, given that the algorithm
doesn’t have much room for improvement by only being
able to travel in a single direction based on a random
origin. Genetic Annealing and MIMIC perform similarly
to Simulated Annealing, with the primary difference be-
ing larger run times with slightly smaller fitness scores.
MIMIC likely performs very well due to utilizing the den-
sity estimator from successful iterations of the algorithm,

5



whereas the Genetic Algorithm is similar in terms of com-
bining successful iterations based on a given population
size. With the optimal parameters of population size being
higher, this will lead to higher run times of the algorithm
as well.

3.2 Four Peaks:

Four Peaks Problem
Metric RHC SA GA MIMIC
Avg. Fitness 4.55 44.7 95 50.8
Max Fitness 25 100 189 155
Avg. Time(s) 3.74 13.8 26.5 65.9

Figure 18: Four Peaks - Algorithm Metric Comparison
Based on these results, the Genetic Algorithm per-
formed the best based on the best avg. fitness and
max fitness. This algorithm appeared to perform well
based on the mutation rates allowing consecutive itera-
tions with good performance to continue improving the
model. Nonetheless, these consecutive iterations are com-
putationally expensive, which is reflected in the run time
being higher compared to two of the three remaining mod-
els. In terms of similar performance, the MIMIC algorithm
appeared to work well but at roughly three times as many
seconds due to the need to determine multiple densities
for all iterations. Simulated annealing and Random Hill
Climb appear to perform worse, likely due to an inability
in escaping local minima.

3.3 Knapsack:

Knapsack Problem
Metric RHC SA GA MIMIC
Avg. Fitness 1473.9 1290.8 1611.9 2817.2
Max Fitness 2689.6 2611.9 3224.5 3237.7
Avg. Time(s) 6.9 0.18 16.6 109.9

Figure 19: Knapsack - Algorithm Metric Comparison
Based on these results, the MIMIC algorithm per-
formed the best in terms of average fitness and maximum
fitness. This is likely a result of the multiple iterations
of samples that are generated based on the density esti-
mator, which we can also see its’ impact in terms of a
significantly longer run time compared to the other al-
gorithms. Interestingly, the Genetic Algorithm performs
similarly in terms of the max fitness score, whereas the
average fitness score is significantly less compared to the
MIMIC algorithm. This can likely be attributed to the
similar function of combining multiple states with a wide
degree of variance to reach a successful result. This would
likely be the case in terms of bringing the average fitness
score down, but still allowing for a successful maximum
fitness score to be determined.

4 Optimized Neural Network

4.1 Overview

After determining the optimal parameters across the three
different optimization problems (Flip Flop, Four Peaks,
Knapsack), these parameters have been fed into a Neu-
ral Network utilizing an Employee Attrition dataset from
IBM, which was utilized for Assignment 1. In order to
prepare the dataset, several data manipulation steps were
performed to ensure the data was in the correct format.
First, all categorical variables were converted into dummy
variables, to ensure that all data is represented numeri-
cally. From there, due to the fact that neural networks
have high sensitivities to non-scaled data, a scaler func-
tion was applied to normalize all of the input data. The
data was then split into a training and test split via a
random stratified sample, in order to ensure that the tar-
get variable, ”Attrition” (indicates that an employee had
left their position in the company), is equally represented
across all samples.

4.2 Gradient Descent

To provide a means of comparison against the three opti-
mization algorithms, gradient descent was first tested for
the neural network.

4.2.1 Fitness Curve

The associated fitness curve appears to show a maximized
fitness score after roughly 300 iterations.

Figure 20: Gradient Descent - Fitness Curve

4.2.2 Precision-Recall

The accuracy-precision F1 score shows a value of 0.67,
which appears to be a solid score in terms of predictive
ability.This shows that the natural convergence towards
local optima works well.

Figure 21: Gradient Descent - Precision Recall

6



4.2.3 Learning Curve

The associated learning curve shows a cross-validation
score of 0.85, whereas the training score is 0.85 as well.
These values do converge, and likely benefited from addi-
tional iterations to ensure both subsets of data are equally
representative in terms of the model’s predictive ability.

Figure 22: Gradient Descent - Learning Curve

4.2.4 Confusion Matrix

The confusion matrix shows that non-attrition records
heavily outweigh the number of employee records where
attrition took place; however, the relative accuracy of pre-
dicting non-attrition and attrition employees is high.

Figure 23: Gradient Descent - Confusion Matrix

4.2.5 Scalability

The model shows nearly a linear trend in terms of training
samples and time required for training. Therefore, for the
training and validation datasets, one could continue to
feed additional data into the model to be sure the learning
curve results converge.

Figure 24: Gradient Descent - Scalability

4.3 Random Hill Climb

This model was tested with 3 initial learning rates (0.001,
0.01, 0.1) and 3 restart parameters for a total of 9 models
to train in a GridSearch method. The maximum achieved
mean cross-validation score was 0.55. The optimized pa-
rameters included an initial learning rate of 0.1, with a
maximum of 2500 iterations and 0 restarts.

4.3.1 Precision-Recall

The accuracy-precision F1 score shows a value of 0.5,
which indicates worse performance compared to gradient
descent. The convergence to local optima, in addition to
the inability to step initially into a worse direction for the
optimization function likely results in the worse perfor-
mance compared to gradient descent.

Figure 25: Random Hill Climb - Precision Recall

4.3.2 Learning Curve

The learning curve results converge towards 0.85; however,
these curves are not fully converged after 1,000 training
examples. This trend suggests that the model’s predictive
ability fits both the training and test validation set well.

7



Figure 26: Random Hill Climb - Learning Curve

4.3.3 Confusion Matrix

In looking at the confusion matrix results, the model does
well in comparing the non-attribution results; however,
the model performs significantly worse in terms of predic-
tive ability of the attrition label, given that only 11% of
values were accurately predicting for this label (42 of 47
instances).

Figure 27: Random Hill Climb - Confusion Matrix

4.3.4 Scalability

The model also shows nearly a linear trend in terms of
training samples and time required for training. There-
fore, for the training and validation datasets, one could
continue to feed additional data into the model to be sure
the learning curve results converge and potentially shift
the overall accuracy higher.

Figure 28: Random Hill Climb - Scalability

4.4 Simulated Annealing

This model was tested with two values for a maximum
number of iterations (1000, 2500), three initial learning
rates (0.001, 0.01, 0.1), and three parameters for number
of restarts (0, 5, 10). Collectively, these parameters were
tested via a GridSearch method for training for a total
of 18 trained models. The optimally selected parameters
included 1000 maximum iterations, an initial learning rate
of 0.1, and 0 restarts.

4.4.1 Precision-Recall

The accuracy-precision F1 score shows a value of 0.23.
This model performs much worse compared to the ran-
dom hill climb algorithm and to gradient descent. Simu-
lated annealing avoids the issue of local maxima, and thus
showed promising results based on the increased results
compared to RHC.

Figure 29: Simulated Annealing - Precision Recall

4.4.2 Learning Curve

The learning curve results converge towards 0.62. The
results appear to be fully converged, but the performance
is much worse in comparison to Random Hill Climb. This
may be the result of parameter tuning that didn’t include a
wide enough range. For example, the maximum number of
iterations could be increased; however, the high learning
rate value of 0.1 with increased iterations may result in
increased variability of model results.

8



Figure 30: Simulated Annealing - Learning Curve

4.4.3 Confusion Matrix

The confusion matrix shows very poor performance in
terms of predictive ability for both target classes. The
performance is nearly split in terms of true random

performance.

Figure 31: Simulated Annealing - Confusion Matrix

4.4.4 Scalability

The model tends to show a staggered increase in perfor-
mance regarding model scalability; however, the standard
deviation range tends to get wider as training examples
increase, thus showing that there’s a lesser confidence in
the mean values as time goes on.

Figure 32: Simulated Annealing - Scalability

4.5 Genetic Algorithm

This model was tested with three values for restarting (0,
5, 10), two values for maximum iterations (1000, 2500)
and three values for initial learning rate (0.001, 0.01, 0.1).
In total, 18 neural network models were trained to identify
the optimal parameters. The optimal model parameters
included a learning rate of 0.001, 0 restarts, and 1000 max-
imum iterations.

4.5.1 Precision-Recall

The accuracy-precision F1 score shows a value of 0.64.
This result shows optimal performance compared to the
other algorithms, in addition to gradient descent. This
can potentially be attributed to the combination of good
weights to improve the optimization in this algorithm.

Figure 33: Genetic Algorithm - Precision Recall

4.5.2 Learning Curve

The associated learning curve shows a cross-validation
score of 0.85. These curves appear to be fully converged
after 1,000 training examples. This shows that the Ge-
netic Algorithm’s predictive ability fits the training and
testing datasets evenly.

9



Figure 34: Genetic Algorithm - Learning Curve

4.5.3 Confusion Matrix

In looking at the confusion matrix results, the Genetic
Algorithm performed well for the ”No Attrition” label;
however, similar to the other models, the model struggles
to predict with any confidence the ”Attrition” dataset,
given that only 44% of this target label class were correctly
predicted.

Figure 35: Genetic Algorithm - Confusion Matrix

4.5.4 Scalability

The model’s scalability is staggered in terms of training
examples; however, the wide range in this parameter leads
one to believe that generally there’s a steady increase in
fitness time with additional training data.

Figure 36: Genetic Algorithm - Scalability

4.6 Optimization Function Comparison

5 Conclusion

In terms of the optimization functions, the simulated an-
nealing function performed well based on allowing a func-
tion where local optima can be escaped to find the max-
ima. The genetic algorithm performed well specifically
on the Four Peaks algorithm based on the ability to itera-
tively build on good performance to improve the optimiza-
tion. The MIMIC algorithm performed well on the Knap-
sack algorithm based on the usage of density estimators to
optimize the problem. The optimization algorithms each
had varying levels of performance for the IBM Employee
Attrition dataset used from Assignment 1.
Most of the models tested in this work showed promising
results; however, there were concerns with results re-
garding employees within the attrition class. In order to
alleviate issues with sensitivities associated with neural
network weights, the input data was normalized prior to
training. Regardless, the simulated annealing algorithm
showed poor performance and likely could’ve benefited
from additional tuning parameters. The final parameters
for the Random Hill Climb and Simulated Annealing
algorithms ended up being very similar, which thus
shows that the neural network weights tend to result in
convergence to local optima.

A surprising result in this experiment was the usage
of the Genetic Algorithm, which featured strong perfor-
mance based on utilizing optimal parent node attributes
for future child nodes. A consequence of this algorithm
being used, is the high computational complexity required
to allow the algorithm to run. Nonetheless, the optimal
result was obtained using the algorithm, and given the
proper computational power, would allow for a powerful
neural network model to be created.

10



6 References

References

[1] De Bonet, J., Isbell, C., Viola, P. (1996). MIMIC:
Finding optima by estimating probability densities.
Advances in neural information processing systems, 9.

[2] Mallawaarachchi, V. (2020, March 1). Introduc-
tion to genetic algorithms - including example
code. Medium. Retrieved March 6, 2022, from
https://towardsdatascience.com/introduction-
to-genetic-algorithms-including-example-code-
e396e98d8bf3

[3] Shelar, N. (2020, August 9). Simulated an-
nealing in AI: The Engineer. The Poly-
math Blog. Retrieved March 6, 2022, from
https://neelshelar.com/simulated-annealing/

[4] Understanding hill climbing algorithm in Artifi-
cial Intelligence. Section. (n.d.). Retrieved March
6, 2022, from https://www.section.io/engineering-
education/understanding-hill-climbing-in-ai/

[5] IBM (2017) IBM HR Analytics Employee Attrition
and Performance. Kaggle Dataset

11

https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset

	Description of Optimization Problem
	Algorithm Overview
	Randomized Hill Climb
	Simulated Annealing
	Genetic Algorithm
	Mutual-Information-Maximizing Input Clustering (MIMIC)


	Results
	Algorithm Results
	Randomized Hill Climb
	Simulated Annealing:
	Genetic Algorithm
	MIMIC


	Analysis of Results
	Flip Flop:
	Four Peaks:
	Knapsack:

	Optimized Neural Network
	Overview
	Gradient Descent
	Fitness Curve
	Precision-Recall
	Learning Curve
	Confusion Matrix
	Scalability

	Random Hill Climb
	Precision-Recall
	Learning Curve
	Confusion Matrix
	Scalability

	Simulated Annealing
	Precision-Recall
	Learning Curve
	Confusion Matrix
	Scalability

	Genetic Algorithm
	Precision-Recall
	Learning Curve
	Confusion Matrix
	Scalability

	Optimization Function Comparison

	Conclusion
	References

